Improved Exponential Ratio and Product Type Estimators for Finite Population Mean Under Double Sampling Scheme

Ran Vijay Kumar Singh¹, Audu Ahmed²

Abstract- In this paper an improved exponential chain ratio and product type estimators have been proposed for estimating finite population mean of the study variable in double sampling when the information on another additional auxiliary character is available along with the main auxiliary character. The expression for the bias and mean square error of the proposed estimators have been derived in two different cases and compared with the MSE of other existing estimators, which utilizes the information on one or two auxiliary characteristic. The empirical studies have also been carried out to demonstrate the efficiencies of the proposed estimators.

Index terms- Auxiliary information, Bias, Double sampling, Exponential chain ratio and product estimators, Mean square error, Study variate,.

____ 🌢

1 INTRODUCTION

In survey sampling, the utilization of auxiliary information is frequently acknowledged to increase the precision of the estimators of population characteristics. When the auxiliary information is used at the estimation stage, the classical ratio estimator is considered to be most practicable. However, it is inferior to the linear regression estimator a less practicable estimator-in the sense that the approximate variance of the former is greater than or equal to that of the later. Owing to this limitation of classical ratio estimator in recent past, effort have been made by several authors to develop more and more estimators which are ratio type in nature but have lesser variance than the classical ratio estimator and attain the lower bound of variance of the linear regression estimator.

It is well established that when the population mean X of auxiliary characteristic X is not known. It is advisable to use the technique of double sampling, which involves the estimation of \overline{X} by the sample mean \overline{x}_1 based on a

preliminary sample of size n_1 of which n is a subsample

R.V.K.Singh, Senior lecturer and Head, Department of Mathematics,

Kebbi State University of Science and Technology, Aliero, Nnigeria,

A.Ahmed, Assistant lecturer, Usmanu danfodiyo university, Sokoto,

Nigeria (e-mail:ahmedgborom@yahoo.com).

 $(n < n_1)$. However, in many situations, we may have the information on another auxiliary characteristic Z which is highly correlated to auxiliary characteristic X but less correlated to study characteristic Y. in such situation, the estimate of \overline{X} based on ratio method of estimation by utilizing the information on auxiliary characteristic Z as $\overline{X} = \overline{x_1}\overline{Z} / \overline{z}'$ would be better than $\overline{x_1}$.

509

[1] suggested a class of estimators by using two auxiliary variables in two-phase sampling. [2] proposed the exponential ratio estimator under simple random sampling without replacement for the population mean. [3], [4], [5], [6] and [7] suggested exponential estimators in single and two phase sampling for population mean of study characteristic.

2 NOTATION AND EXISTING ESTIMATORS

Let Y_i denotes the value of characteristic under study for the ith unit in population of size N (i=1, 2, ...N). and X_i , The value of auxiliary characteristic for the ith unit in population. Then

 $\overline{Y} = \frac{1}{N} \sum_{i=1}^{N} Y_i$; The population mean of characteristic under study.

 $\overline{X} = \frac{1}{N} \sum_{i=1}^{N} X_i$; The population mean of auxiliary characteristic.

 $S_Y^2 = \frac{1}{N-1} \sum_{i=1}^{N} (Y_i - \overline{Y})^2$; The population mean square of characteristic under study.

⁽e-mail: singhrvk13@gmail.com)

 $S_X^2 = \frac{1}{N-1} \sum_{i=1}^N (X_i - \bar{X})^2$; The population mean square of auxiliary characteristic

Let (x_i, y_i) , i = 1, 2, ..., be the pair of observations for auxiliary variable X and study variable Y respectively drawn by simple random sampling without replacement. Let the population mean \overline{X} of the auxiliary variable X is not known. Therefore to estimate the population mean \overline{X} by using technique of two phase sampling, the first-phase sample of size n_1 is drawn from the population, on which only the auxiliary variable X is observed. Then a second phase sample of size n is drawn, on which both study variable Y and auxiliary variable X are observed. Further let \overline{x}_1 be the sample mean based on n_1 units of first phase sample and \overline{y} and \overline{x} be the sample means of based on n units at second phase respectively. Then ratio and product estimators of population mean \overline{Y} under two phase sampling are given by

$$\hat{\overline{Y}}_{R}^{d} = \overline{y} \frac{\overline{x}_{1}}{\overline{x}}$$
 and $\hat{\overline{Y}}_{P}^{d} = \overline{y} \frac{\overline{x}}{\overline{x}_{1}}$ (1)

Let another auxiliary characteristic Z that is highly correlated to auxiliary characteristic X but less correlated to study characteristic Y. Let \bar{z}_1 denotes the sample mean of auxiliary characteristic Z based on preliminary sample of size n_1 . In such situation, the estimate of \bar{X} based on ratio method of estimation by utilizing the information on auxiliary characteristic Z as $\bar{X} = \frac{\bar{x}_1}{\bar{z}_1}\bar{Z}$ would be better than \bar{x}_1 . Therefore by utilizing the information on two auxiliary variable under two phase sampling [3] suggested a chain ratio and product type estimators for population mean \bar{Y} . Both observed the properties of their estimators for the following two cases[9];.

Case I: When the second phase sample of size n is a subsample of the first phase of size n_1 .

Case II: When the second phase sample of size n is drawn independently of the first phase sample of size n_1 .

The MSE of chain ratio estimator suggested by [3] under case I and case II are:

$$MSE\left(\hat{\bar{Y}}_{R}^{dc}\right)_{I} \cong \bar{Y}^{2} \begin{bmatrix} \frac{1-f}{n} C_{y}^{2} + \frac{1-f^{*}}{n} C_{x}^{2} (1-2C_{yx}) \\ + \frac{1-f_{1}}{n_{1}} C_{z}^{2} (1-2C_{yz}) \end{bmatrix}$$
(2)

$$MSE\left(\hat{Y}_{R}^{dc}\right)_{II} \cong \overline{Y}^{2}\left[\frac{1-f}{n}C_{y}^{2} + \frac{1-f}{n}C_{x}^{2}\left(1-2C_{yx}\right) + \frac{1-f_{1}}{n_{1}}C_{x}^{2} + \frac{1-f_{1}}{n_{1}}C_{z}^{2}\left(1-2C_{xz}\right)\right]$$
(3)

Again the MSE of chain product estimator suggested by [3] under case I and case II are:

$$MSE\left(\hat{\bar{Y}}_{p}^{dc}\right)_{I} \cong \bar{Y}^{2}\left[\frac{1-f}{n}C_{y}^{2} + \frac{1-f^{*}}{n}C_{x}^{2}\left(1+2C_{yx}\right) + \frac{1-f_{1}}{n_{1}}C_{z}^{2}\left(1+2C_{yz}\right)\right]$$
(4)

$$MSE\left(\hat{\bar{Y}}_{p}^{dc}\right)_{II} \cong \bar{Y}^{2}\left[\frac{1-f}{n}C_{y}^{2} + \frac{1-f}{n}C_{x}^{2}\left(1+2C_{yx}\right) + \frac{1-f_{1}}{n_{1}}C_{x}^{2} + \frac{1-f_{1}}{n_{1}}C_{z}^{2}\left(1+2C_{xz}\right)\right]$$
(5)

And the MSE of exponential chain ratio estimator proposed by [8] under case I and case II are:

$$MSE\left(\hat{\bar{Y}}_{Re}^{dc}\right)_{I} \cong \bar{Y}^{2} \begin{bmatrix} \frac{1-f}{n}C_{y}^{2} + \frac{1}{4}\left(\frac{1-f^{*}}{n}C_{x}^{2} + \frac{1-f_{1}}{n_{1}}C_{z}^{2}\right) \\ -\left(\frac{1-f^{*}}{n}C_{yx}C_{x}^{2} + \frac{1-f_{1}}{n_{1}}C_{yz}C_{z}^{2}\right) \end{bmatrix}$$
(6)

$$MSE\left(\hat{\bar{Y}}_{Re}^{dc}\right)_{\mu} \cong \bar{Y}^{2} \begin{bmatrix} \frac{1-f}{n}C_{y}^{2} + \frac{1}{4}\left(f^{**}C_{x}^{2} + \frac{1-f_{1}}{n_{1}}C_{z}^{2}\right) \\ -\left(\frac{1-f}{n}C_{yx}C_{x}^{2} + \frac{1}{2}\frac{1-f_{1}}{n_{1}}C_{xz}C_{z}^{2}\right) \end{bmatrix}$$
(7)

The MSE of exponential chain product estimator proposed by [8] under case I and case II are:

$$MSE\left(\hat{\overline{Y}}_{p_{e}}^{de}\right)_{I} \cong \overline{Y}^{2} \begin{bmatrix} \frac{1-f}{n}C_{y}^{2} + \frac{1}{4}\left(\frac{1-f^{*}}{n}C_{x}^{2} + \frac{1-f_{1}}{n_{1}}C_{z}^{2}\right) \\ + \left(\frac{1-f^{*}}{n}C_{yz}C_{x}^{2} + \frac{1-f_{1}}{n_{1}}C_{yz}C_{z}^{2}\right) \end{bmatrix}$$
(8)

$$MSE\left(\hat{\overline{Y}}_{P_{e}}^{dc}\right)_{II} \cong \overline{Y}^{2} \begin{bmatrix} \frac{1-f}{n}C_{y}^{2} + \frac{1}{4}\left(f^{**}C_{x}^{2} + \frac{1-f_{1}}{n_{1}}C_{z}^{2}\right) \\ +\left(\frac{1-f}{n}C_{yx}C_{x}^{2} - \frac{1}{2}\frac{1-f_{1}}{n_{1}}C_{xz}C_{z}^{2}\right) \end{bmatrix}$$
(9)

3 PROPOSED ESTIMATORS

Thus motivated by [2] and [3] an improved exponential chain ratio and product type estimators have been proposed in double sampling for estimating finite population mean \overline{Y} by using two auxiliary characters. The properties of proposed estimators have been observed for both the cases mentioned in section II.

Let us assume that $\rho_{yx} > \rho_{yz} > 0$.

IJSER © 2015 http://www.ijser.org International Journal of Scientific & Engineering Research, Volume 6, Issue 4, April-2015 ISSN 2229-5518

The improved exponential chain ratio estimator in double sampling is defined as

$$\overline{Y}_{\sqrt{\text{Re}}}^{dc} = \overline{y} \exp\left(\frac{\sqrt{\overline{x_1}\frac{\overline{Z}}{\overline{z_1}}} - \sqrt{\overline{x}}}{\sqrt{\overline{x_1}\frac{\overline{Z}}{\overline{z_1}}} + \sqrt{\overline{x}}}\right)$$
(10)

and improved exponential chain product estimator in double sampling as

$$\overline{Y}_{\sqrt{P_{e}}}^{dc} = \overline{y} \exp\left(\frac{\sqrt{\overline{x}} - \sqrt{\overline{x}_{1}}\frac{\overline{Z}}{\overline{z}_{1}}}{\sqrt{\overline{x}} + \sqrt{\overline{x}_{1}}\frac{\overline{Z}}{\overline{z}_{1}}}\right)$$
(11)

4BIAS AND MEAN SQUARE ERROR OF $\hat{\overline{Y}}^{dc}_{\sqrt{\text{Re}}}$ and $\hat{\overline{Y}}^{dc}_{\sqrt{Pe}}$

To derive the Bias and MSE of the proposed estimators for case I, let us define:

$$\bar{y} = \bar{Y} (1 + e_0), \quad \bar{x} = \bar{X} (1 + e_1), \quad \bar{x}_1 = \bar{X} (1 + e'_1)$$
And $\bar{z}_1 = \bar{Z} (1 + e_2)$ Thus
$$E(e_0) = E(e_1) = E(e'_1) = E(e_2) = 0,$$

$$E(e_0^2) = \frac{1 - f}{n} C_y^2,$$

$$E(e_1^2) = \frac{1 - f}{n} C_x^2, \quad E(e_2^2) = \frac{1 - f_1}{n_1} C_z^2,$$

$$E(e_0e_1) = \frac{1 - f}{n} C_{yx} C_x^2$$

$$E(e_0e'_1) = \frac{1 - f_1}{n_1} C_{yx} C_x^2, \quad E(e_0e_2) = \frac{1 - f_1}{n_1} C_{yz} C_z^2,$$

$$E(e_1e'_1) = \frac{1 - f_1}{n_1} C_{xz}^2, \quad E(e'_1e_2) = \frac{1 - f_1}{n_1} C_{yz} C_z^2,$$

$$E(e_1e_2) = \frac{1 - f_1}{n_1} C_{xz} C_z^2, \quad E(e'_1e_2) = \frac{1 - f_1}{n_1} C_{xz} C_z^2$$
(12)

where $f = \frac{n}{N}, f_1 = \frac{n_1}{N};$

 $C_y = \frac{S_y}{\overline{Y}}, C_x = \frac{S_x}{\overline{X}}$ and $C_z = \frac{S_z}{\overline{Z}}$ are the coefficients of

variation of the study variate y, auxiliary variates x and z respectively.

$$\rho_{yx} = \frac{S_{yx}}{S_x S_y}, \ \rho_{yz} = \frac{S_{yz}}{S_y S_z} \text{ and } \rho_{zx} = \frac{S_{zx}}{S_x S_z} \text{ are the}$$

correlation coefficients between y and x, y and z and x and z respectively.

and $S_z^2 = \frac{1}{N-1} \sum_{i=1}^{N} (Z_i - \overline{Z})^2$ is the population mean square of study variate Z.

$$S_{yx} = \frac{1}{N-1} \sum_{i=1}^{N} (Y_i - \overline{Y}) (X_i - \overline{X})$$
$$S_{yz} = \frac{1}{N-1} \sum_{i=1}^{N} (Y_i - \overline{Y}) (Z_i - \overline{Z})$$

 $S_{xz} = \frac{1}{N-1} \sum_{i=1}^{N} (X_i - \overline{X}) (Z_i - \overline{Z}) \text{ are the co-variances between}$ Y and X, Y and Z; and X and Z respectively; and

$$C_{yx} = \frac{\rho_{yx}C_y}{C_x}, C_{yz} = \frac{\rho_{yz}C_y}{C_z} \text{ and } C_{xz} = \frac{\rho_{xz}C_x}{C_z}$$

From (10) and (11), the bias of the estimators $\hat{\overline{Y}}_{\sqrt{\text{Re}}}^{dc}$ and $\hat{\overline{Y}}_{\sqrt{Pe}}^{dc}$ can be obtained by taking the expectation and using (12) as;

$$\begin{split} Bias \Big(\hat{Y}_{\sqrt{kc}}^{dc}\Big)_{I} &\equiv \overline{Y} \Bigg[-\frac{1}{4} \Bigg(\frac{1-f}{n} C_{y_{x}} C_{x}^{2} + \frac{1-f_{1}}{n_{1}} C_{y_{x}} C_{z}^{2} + \frac{1-f_{1}}{n_{1}} C_{y_{x}} C_{x}^{2} \Bigg) + \frac{1}{32} \Bigg(\frac{1-f}{n} C_{x}^{2} C_{x}^{2} - \frac{1-f_{1}}{n_{1}} C_{y_{x}} C_{x}^{2} \Bigg) + \frac{1}{32} \Bigg(\frac{1-f}{n} C_{x}^{2} C_{x}^{2} - \frac{1-f_{1}}{n_{1}} C_{x} C_{x}^{2} - \frac{1-f_{1}}{n_{1}} C_{x}^{2} C_{x}^{2} - \frac{1-f_{1}}{n_{1}} C_{x}^{2} \Bigg) \Bigg] \\ (13) \\Bias \Big(\hat{Y}_{\sqrt{kc}}^{dc} \Big)_{I} &\equiv \overline{Y} \Bigg[\frac{1}{4} \Bigg(\frac{1-f}{n} C_{y_{x}} C_{x}^{2} + \frac{1-f_{1}}{n_{1}} C_{y_{x}} C_{z}^{2} + \frac{1-f_{1}}{n_{1}} C_{y_{x}} C_{x}^{2} \Bigg) + \frac{1}{32} \Bigg(\frac{1-f}{n} C_{x}^{2} C_{x}^{2} - \frac{1-f_{1}}{n_{1}} C_{y_{x}} C_{x}^{2} \Bigg) + \frac{1}{32} \Bigg(\frac{1-f}{n} C_{x}^{2} C_{x}^{2} - \frac{1-f_{1}}{n_{1}} C_{y_{x}} C_{x}^{2} \Bigg) \Bigg] \\ (14) \end{split}$$

From (10) and (11), the Mean Square Error (MSE) of the estimators $\hat{T}_{\sqrt{\text{Re}}}^{dc}$ and $\hat{T}_{\sqrt{Pe}}^{dc}$ can be obtained by squaring and taking the expectation as;

$$MSE\left(\hat{T}_{\sqrt{Re}}^{dc}\right)_{T} \cong \overline{Y}^{2} \begin{bmatrix} \frac{1-f}{n}C_{y}^{2} + \frac{1}{16}\left(\frac{1-f^{*}}{n}C_{x}^{2} + \frac{1-f_{1}}{n_{1}}C_{z}^{2}\right) \\ -\frac{1}{2}\left(\frac{1-f^{*}}{n}C_{yx}C_{x}^{2} + \frac{1-f_{1}}{n_{1}}C_{yz}C_{z}^{2}\right) \end{bmatrix}$$
(15)

$$MSE\left(\hat{T}_{\sqrt{Pe}}^{dc}\right)_{I} \cong \overline{Y}^{2} \begin{bmatrix} \frac{1-f}{n}C_{y}^{2} + \frac{1}{16}\left(\frac{1-f^{*}}{n}C_{x}^{2} + \frac{1-f_{1}}{n_{1}}C_{z}^{2}\right) \\ + \frac{1}{2}\left(\frac{1-f^{*}}{n}C_{yx}C_{x}^{2} + \frac{1-f_{1}}{n_{1}}C_{yz}C_{z}^{2}\right) \end{bmatrix}$$
(16)

where
$$f^* = \frac{n}{n_1}$$
.

Now to obtain the bias and MSE of the proposed estimators for case II, we have

IJSER © 2015 http://www.ijser.org International Journal of Scientific & Engineering Research, Volume 6, Issue 4, April-2015 ISSN 2229-5518

 $E(e_0e_1') = E(e_1e_1) = E(e_0e_2) = E(e_1e_2) = 0$ (17)

From (10),(11) and (17), the bias and mean square error of the estimators $\hat{\overline{Y}}_{\sqrt{\text{Re}}}^{dc}$ and $\hat{\overline{Y}}_{\sqrt{Pe}}^{dc}$ are obtained as;

$$Bias\left(\hat{T}_{\sqrt{Re}}^{dc}\right)_{II} \cong \overline{Y} \begin{bmatrix} \frac{-3}{32} \frac{1-f_1}{n_1} C_x^2 + \frac{1}{32} \left(5 \frac{1-f}{n} C_x^2 + \frac{1-f_1}{n_1} C_z^2 \right) \\ -\frac{1}{16} \frac{1-f_1}{n_1} C_{xz} C_z^2 - \frac{1}{4} \frac{1-f}{n} C_{yx} C_x^2 \end{bmatrix}$$
(18)

$$Bias\left(\hat{T}_{\sqrt{Pe}}^{dc}\right)_{II} \cong \overline{Y} \begin{vmatrix} \frac{1}{4} \frac{1-f}{n} C_{yx} C_{x}^{2} + \frac{1}{32} \frac{1-f_{1}}{n_{1}} C_{x}^{2} - \frac{3}{32} \\ \left(\frac{1-f}{n} C_{x}^{2} + \frac{1-f_{1}}{n_{1}} C_{z}^{2}\right) \\ -\frac{1}{16} \frac{1-f_{1}}{n_{1}} C_{xz} C_{z}^{2} \end{vmatrix}$$
(19)

$$MSE\left(\hat{T}_{\sqrt{Re}}^{de}\right)_{II} \cong \overline{Y}^{2} \begin{bmatrix} \frac{1-f}{n}C_{y}^{2} + \frac{1}{16}\left(f^{**}C_{x}^{2} + \frac{1-f_{1}}{n_{1}}C_{z}^{2}\right) \\ -\frac{1}{8}\left(4\frac{1-f}{n}C_{yx}C_{x}^{2} + \frac{1-f_{1}}{n_{1}}C_{xz}C_{z}^{2}\right) \end{bmatrix}$$
(20)

$$MSE\left(\hat{T}_{\sqrt{Pe}}^{de}\right)_{II} \cong \overline{Y}^{2} \begin{bmatrix} \frac{1-f}{n}C_{y}^{2} + \frac{1}{16}\left(f^{**}C_{x}^{2} + \frac{1-f_{1}}{n_{1}}C_{z}^{2}\right) \\ + \frac{1}{8}\left(4\frac{1-f}{n}C_{yx}C_{x}^{2} - \frac{1-f_{1}}{n_{1}}C_{xz}C_{z}^{2}\right) \end{bmatrix}$$
(21)
where $f^{**} = \frac{1-f}{n} + \frac{1-f_{1}}{n_{1}}$

5 EFFICIENCY COMPARISONS

In this section conditions have been obtained for both the cases under which the improved exponential chain ratio and product estimators are more precise than the Singh and Choudhury [8] exponential chain ratio and product estimators, Chand [3] chain ratio and product estimators in double sampling and sample mean estimator respectively.

Efficiency Comparisons	Condition for efficiency of proposed estimators		
	Case I	Case II	
$MSE\left(\hat{\bar{Y}}_{Re}^{dc}\right) - MSE\left(\hat{\bar{Y}}_{\sqrt{Re}}^{dc}\right) > 0$	$C_{yx} < \frac{3}{8}$ and	$C_{xz} < \frac{1}{2}$ and	
	$C_{yz} < \frac{3}{8}$	$C_{yx} < \frac{3}{8}$	
$MSE\left(\hat{\bar{Y}}_{Pe}^{dc}\right) - MSE\left(\hat{\bar{Y}}_{\sqrt{Re}}^{dc}\right) > 0$	$C_{yx} > -\frac{1}{8}$	$C_{yx} > -\frac{1}{8}$	
	and $C_{yz} > -\frac{1}{8}$	and $C_{xz} < \frac{1}{2}$	
$MSE\left(\hat{\vec{Y}}_{R}^{dc}\right) - MSE\left(\hat{\vec{Y}}_{\sqrt{Re}}^{dc}\right) > 0$	$C_{yx} < \frac{5}{8}$	$C_{yx} < \frac{5}{8}$ and	

IJSER © 2015 http://www.ijser.org

	and $C_{yz} < \frac{5}{8}$	<i>C_{xz}</i> < 1
$MSE\left(\hat{\bar{Y}}_{p}^{dc}\right) - MSE\left(\hat{\bar{Y}}_{\sqrt{\text{Re}}}^{dc}\right) > 0$	$C_{yx} > -\frac{3}{8}$	$C_{yx} > -\frac{3}{8}$
	and	and
	$C_{yz} > -\frac{3}{8}$	$C_{xz} > -\frac{15}{34}$
$MSE\left(\overline{y}\right) - MSE\left(\hat{\bar{Y}}_{\sqrt{Re}}^{dc}\right) > 0$	$C_{yx} > \frac{1}{8}$	$C_{yx} > 0$ and $C_{xz} > 0$
	and $C_{yz} > \frac{1}{8}$	AL.
$MSE\left(\hat{\overline{Y}}_{Re}^{dc}\right) - MSE\left(\hat{\overline{Y}}_{\sqrt{Pe}}^{dc}\right) \ge 0$	$C_{yx} < \frac{1}{8}$	$C_{yx} < \frac{1}{8}$ and
	and $C_{yz} < \frac{1}{8}$	$C_{xz} < \frac{1}{2}$
$MSE\left(\hat{\bar{Y}}_{Pe}^{dc}\right) - MSE\left(\hat{\bar{Y}}_{\sqrt{Pe}}^{dc}\right) > 0$	$C_{yx} > -\frac{3}{8}$	$C_{yx} > -\frac{3}{8}$
	and	and $C_{xz} < \frac{1}{2}$
	$C_{yz} > -\frac{3}{8}$	2
$MSE\left(\hat{\overline{Y}}_{R}^{dc}\right) - MSE\left(\hat{\overline{Y}}_{\sqrt{Pe}}^{dc}\right) > 0$	$C_{yx} < \frac{3}{8}$	$C_{yx} < \frac{3}{8}$ and
	and $C_{yz} < \frac{3}{8}$	$C_{xz} < 1$
$MSE\left(\hat{\bar{Y}}_{p}^{dc}\right) - MSE\left(\hat{\bar{Y}}_{\sqrt{Pe}}^{dc}\right) > 0$	$C_{yx} > -\frac{5}{8}$	$C_{yx} > -\frac{5}{8}$
	and	and
	$C_{yz} > -\frac{5}{8}$	$C_{xz} > -\frac{15}{34}$
$MSE\left(\overline{y}\right) - MSE\left(\hat{\overline{Y}}_{\sqrt{Pe}}^{dc}\right) > 0$	$C_{yx} < -\frac{1}{8}$	$C_{yx} > 0$ and
(vre)	-	$C_{xz} > 0$
	and	
	$C_{yz} < -\frac{1}{8}$	

6 EMPIRICAL STUDY

To examine the merits of the proposed estimators, we have considered four natural population data sets. The sources of populations, nature of the variates y, x and z; and the values of the various parameters are given as.

Par	Populatio	Populatio	Populati	Populatio
ame	n I-	n II-	on III -	n IV -
ters	Source:	Source:	Source:	Source:
	Cochran	Sukhatme	Srivastav	Srivastava
	(1977)	and Chand	a et al.	et al.
	<i>Y</i> : No. of	(1977)	(1989,	(1989,
	'placebo	Y: Apple	Page	Page 3922)
	children	trees of	3922)	Y: The
	X: No. of	bearing	Y: The	measurem
	paralytic	age in	measure	ent of
	polio cases	1964	ment of	weight of
	in the	X: Bushels	weight of	children

International Journal of Scientific & Engineering Research, Volume 6, Issue 4, April-2015 ISSN 2229-5518

1001122	155IN 2229-5518					
	placebo	of apples	children	<i>X</i> : Mid		
	group	harvested	X: Mid	arm		
	Z: No. of	in 1964	arm	circumfere		
	paralytic	Z: Bushels	circumfer	nce of		
	polio cases	of apples	ence of	children		
	in the 'not	harvested	children	Z : Skull		
	inoculated'	in 1959	Z: Skull	circumfere		
	group		circumfer	nce of		
			ence of	children.		
			children			
Ν	34	200	82	55		
n	10	20	25	18		
n_1	15	30	43	30		
\overline{Y}	4.92	1031.82	5.60	17.08		
\overline{X}	2.59	2934.58	11.90	16.92		
Ī	2.91	3651.49	39.80	50.44		
C_X^2	1.5175	4.02504	0.0052	0.0049		
C_Y^2	1.0248	2.55284	0.0107	0.0161		
C_Z^2	1.1492	2.09379	0.0008	0.0007		
ρ_{YX}	0.7326	0.93	0.09	0.54		
ρ_{YZ}	0.6430	0.77	0.12	0.51		
ρ_{XZ}	0.6837	0.84	0.86	-0.08		

To observe the relative performance of different estimators of \overline{Y} , we have computed the percentage relative efficiencies of the proposed estimators $\hat{Y}_{\sqrt{\text{Re}}}^{dc}$ and $\hat{Y}_{\sqrt{Pe}}^{dc}$, chain ratio estimator \hat{T}_{R}^{dc} product estimator \hat{T}_{P}^{dc} , exponential chain ratio and product estimators \hat{Y}_{Re}^{dc} and \hat{Y}_{Pe}^{dc} in double sampling and sample mean per unit estimator \overline{y} with respect to \overline{y} in Case I and Case II and the findings are presented in Table 1.

Table 1: Percentage	relative	efficiencies	of	different	esti	\overline{y}
ators with respect to	$\overline{\mathbf{v}}$					

Estimator	ſ		\overline{y}	$\hat{\overline{Y}}_{R}^{dc}$	$\hat{\overline{Y}}_{P}^{dc}$
$\hat{\overline{Y}}_{ extsf{Re}}^{dc}$	$\hat{\overline{Y}}_{Pe}^{dc}$	$\hat{\overline{Y}}^{dc}_{\sqrt{ extsf{Re}}}$	$\hat{\overline{Y}}^{dc}_{\sqrt{Pe}}$		
Case I Populatio 184.36	on I 47.55	144.82	100 67.99	136.91	25.96
Populatio 247.82	n II 46.58	157.98	100 66.46	279.93	26.02
Populatic 97.11	n III 88.38	100.53	100 95.64	81.92	70.22
Populatic 120.57	on IV 78.75	110.83	100 89.08	131.91	61.01

Estimator	\overline{y}	$\hat{\overline{Y}}_{R}^{dc}$	$\hat{\overline{Y}}_{P}^{dc}$
$\hat{\overline{Y}}_{ m Re}^{dc}$ $\hat{\overline{Y}}_{Pe}^{dc}$	$\hat{Y}^{dc}_{\sqrt{ ext{Re}}}$ $\hat{Y}^{dc}_{\sqrt{ ext{Pe}}}$		
Case II Population I 169.36 42.15	100 148.25 63.86	87.63	21.24
Population II 330.07 37.90	100 187.34 58.77	182.67	19.16
Population III 92.43 82.82	100 99.52 93.67	68.82	58.68
Population IV 122.65 70.87	100 113.72 84.94	161.69	48.81

7 CONCLUSION

We have analyzed the exponential chain ratio and product type estimators in double sampling and obtained its bias and MSE equations in two different cases. The MSEs of the proposed estimators have been compared with the MSEs of existing estimators in two phase sampling using information on two auxiliary variables on theoretical basis, and conditions have been obtained in section 5 under which the proposed estimators have smaller MSE than the classical estimators.

Table 1 clearly indicates that the proposed estimator $\hat{\overline{Y}}_{\sqrt{Pe}}^{dc}$ is more efficient than the estimators $\hat{\overline{Y}}_{P}^{dc}$ and $\hat{\overline{Y}}_{Pe}^{dc}$ in both the cases. $\hat{\overline{Y}}_{\sqrt{Re}}^{dc}$ performed better than other estimators for population III in both the cases. Again $\hat{\overline{Y}}_{\sqrt{Re}}^{dc}$ performed better than $\hat{\overline{Y}}_{R}^{dc}$ for population I, II & III in case II. Thus, the uses of the proposed estimators are preferable over other estimators.

REFERENCES

- P. R. Dash and G. Mishra, "An improved class of estimators in two phase sampling using two auxiliary variables", *Communications in Statistics*-Theory and Methods, 40, pp. 4347-4352, 2011.
- [2] S. Bahl and R. K. Tuteja, "Ratio and Product type exponential estimator", *Information and Optimization Sciences*, 12, pp. 159-163,1991.
- [3] L. Chand, "Some ratio type estimator based on two or more auxiliary variables". Unpublished Ph. D. dissertation, Lowa State University, Ames, Lowa, 1975.

- [4] B. V. Sukhatme and L. Chand, "Multivariate ratio-type estimators", *Proceedings of American Statistical* Association, Social Statistics Section, pp. 927–931, 1977.
- [5] B. Kiregyera, "A Chain ratio-type estimator in finite population in double sampling using two auxiliary variable", *Metrika*, 27, pp. 217-223, 1980.
- [6] B. Kiregyera, "Regression-type estimators using two auxiliary variables and the model of double sampling from finite population", *Metrika*, 31, pp. 3-4, 1984.
- [7] H. P. Singh and G. K. Vishwakarma, "Modified exponential ratio and product estimators for finite population mean in double sampling", *Austrian Journal* of *Statistics*, 36(3), pp. 217-225, 2007.
- [8] B. K. Singh and S. Choudhury, "Exponential chain ratio and product type estimators for finite population mean under double sampling scheme", *Global journal of Science Frontier Research*, 12(6), pp.12-24, 2012.
- [9] C. Bose, "Note on the sampling error in the method of double sampling", *Sankhya*, 6, 330, 1943.

IJSER